伊朗北部凌晨发生51级地震首都有震感居民逃离建筑物

2020年7月16日 Off By kenkennet.com

中新网5月8日电 据伊朗媒体报道,当地时间8日凌晨,伊朗北部德黑兰省达马万德县附近发生5.1级地震,首都德黑兰市和附近城市都有震感。目前暂无伤亡和财产损失报告。

据伊朗地震学中心称,地震的震中是伊朗达马万德县(Damavand)附近,震源深度为7公里。

技术总体框架分4层:数据层、技术层、功能层和应用层。

地震持续了几秒钟,导致惊慌失措的居民逃离建筑物。到目前为止,还没有人员伤亡或损坏的报告。

郑冶枫表示,腾讯健康小程序抗疫专区上线的15个工具中,天衍实验室参与了5项,包括疫情知识问答、患者同小区、发热自查、发热门诊、口罩攻略。在疫情问答中,天衍实验室利用自研LTD-BERT模型识别用户意图,把推理速度提高了40倍,满足上线大流量需求,理解用户意图以后做问答匹配,精准地给用户提供疫情信息。

在技术层,我们用爬虫技术、数据库技术、人工智能技术;在功能层;辅用我们以前做的工作,包括拼写纠错、意图识别等;在应用层,就是展现给用户能看到的体验,包括问答系统、个性化推荐系统等。

对CT的诊断,无论对医生、还是AI算法都是非常巨大的挑战。

第三个难点:小区信息未关联具体地址或地理坐标。一般官方发布都只给小区名字,很难做交互,体验也不好,所以我们跟腾讯地图合作,他们开放API给我们,拿小区名字去搜索,然后得到经纬度,名称也做归一化。

此次地震是自伊朗首都郊区的马拉德市发生5.2级地震两年多来的最强烈地震。

找到权威来源之后,我们才把信息放到工具上,没找到就放在内部数据库不会上线。发现权威来源以后,不在我们的白名单里,我们会把这些来源加入到我们白名单。

以下为郑冶枫的演讲全文内容,内部,专注于医疗AI的实验室, 覆盖医疗大数据、医疗自然语言理解、医疗影像等等。我们的使命是“全面支持公司医疗线的应用”。2019年我们实验室提交了将近100个专利,有6个顶会论文发表,参加多项竞赛,取得5项医疗AR竞赛的冠军。

这一比例与新浪科技发起的投票结果大致相当:4万网友在社交平台参与的投票“618你在哪个平台花的钱最多”显示,有2.6亿人选择淘宝天猫,仅4084人投给了京东。

数据层最重要是数据来源,依托互联网信息,用爬虫技术爬取,当然我们也有医疗知识库,对这些信息校对。第一个版本上线,我们覆盖率并不高,可能只覆盖到50%的问题,所以我们会每天分析日志数据,找到里面高频、没有很好回答的问题进行补充;

首先新冠肺炎是新疾病,对医生来说,特别是初级医生,都没见过这种疾病,准确诊断是很大的挑战。早期阶段表征是磨玻璃状,背景对比度不够强,此外磨玻璃本身就存在同状异病的情况,诊断准确率会受影响。

还有个性化问题推荐功能,根据用户输入,可以做一些推荐,比如,根据用户过往问题做相关后续追问,或者推荐一些热点。

我们是采用最新BERT模型做意图识别,把输入的用户意图分类到意图体系里,但是BERT模型速度比较慢,我们进行了模型压缩,最终用自研LTD-BERT模型把推理速度提高了40倍,满足上线大流量需求,我们理解用户意图以后,会做问答匹配,精准给用户提供答案。

我们是采用自动定时爬取的方法,每天爬取2到3次,对爬取的信息用自然语言理解模型,提取小区名字、信息发布来源、信息发布时间等信息;提取出信息以后,跟数据库里已有信息做比对去重,比如小区不同名称,最后,所有数据都要做人工校验确保来源准确。

严格意义上这是患者踪迹查询,有些地方会公布患者踪迹,去过哪些餐馆,哪些公开场所,只要这些信息权威来源公布,我们就会纳入查询范围。

名称归一化很重要,官方发布的小区名字和腾讯地图直接做匹配,30%小区不能匹配,我们花了很多功夫做人工审核、做数据清洗保证数据准确性。

第一个版本上线,很多热点问题没有覆盖到,后续设置了热点问题挖掘模块,发现新问题没有回答就用搜索引擎搜索,自动从网上找到答案,这些答案可能来源参差不齐,我们会做一个质量评估区分,是来源于权威网站还是来历不明网站,只采用权威网站信息,格式可能跟我们不太一样,需要做人工改写。所有改写完的问答,都会找中华预防医学会专家做人工校对,确保无误以后入库。

当然我们也有很多相关技术积累,比如肺结节筛查,虽然病例可能不是肺炎但可以作为负例去训练分类器。

甚至还做了一个接入指南,帮助他们去更快速地接入,可以把我们的工具嵌入到他们的小程序里,做智能问答;也开放给行业合作伙伴,有30多家行业合作伙伴最终接入了我们的系统。

但好在我们团队过去两年一直关注小样本学习问题,最终用自研小样本学习技术,在数据量不是特别大情况得到比较满意的准确率。

数据显示,6月1日开局时刻,天猫618不到半天成交额超去年全天,美容彩妆、大家电、笔记本电脑、电动车等数十个行业的成交额全部同比翻倍,迎来开门红。而在6月18日凌晨第1小时,天猫618成交额同比增长100%。

针对疫情的宏观防控,天衍实验室还利用深度学习对“传统传染病动力学模型”进行优化,为政府做了国内各省份和海外国家“肺炎趋势预测”。预测效果上,实际情况跟模型预测非常吻合,在3月3号发布的武汉预测模型中,后续实际证明误差小于千分之一。

而在新冠肺炎CT辅助诊断产品的研发上,克服数据量不足、标注力量不够等问题,天衍实验室采用魔方自监督学习方式训练模型,在小数据集上进行微调,就肺炎、非肺炎、病毒性肺炎和非病毒性肺炎做分类。

第二个难点:信息来源欠缺权威性。我们的受众比较广,能力越大责任就越大,所以当时设计产品的时候,最重要的考虑就是数据来源必须官方渠道。

我们医学影像团队过去几年技术积累还是非常好的,比如通用技术,2019年我们参加的医学影像竞赛,其中拿到5个竞赛的冠军,光在竞赛总奖金上就达到35万,里面包括检测、分割和分类,覆盖医学影像大部分任务。

苏宁易购6月18日发布的战报也显示,当天全渠道销售规模增长129%。相比之下,京东公布的累计下单金额同比去年同期的2015亿元,增幅为33.6%。

另外一种方法是CT检测,CT普及率高,一般县级医院甚至乡镇医院都有CT扫描仪,扫描速度也很快,5分钟就可以,假如现场有放射科医生阅片,再需要15分钟左右,就可以知道肺部CT是否有新冠肺炎症状,比核酸检测更快,敏感性也比较高,根据钟南山的论文中76%的患者肺部CT会出现异常,敏感度超过核酸。

在这场疫情后最大消费季中,天猫618吸引了全平台最多的消费者,引领了10万品牌创新增长和百万商家强力“回血”,激发强劲的内需动能。

这个项目的初衷是提高诊断准确性。现在新冠诊断有两条技术路线,一个是核酸检测,核酸阳性就代表携带病毒,只要不是操作失误,就非常准确,但是有假阴率的情况。核酸检测还有供应量不足、检测时间长等其他问题,最终确诊需要一天或两天时间。

对于武汉一线医生,做CT检查人特别多,工作量特别大,每天都是超负荷工作,一个薄层CT扫描会产生300张左右的影像,肉眼阅读可能需要5到15分钟,对医生来说确实需要一个能够帮助提高诊断准确率,加快阅片速度的助手。

3、肺炎趋势预测,是政府部门合作项目,为下一步疫情防控提供参考,三个项目覆盖了to C、to B和to G。

在美国,除Uber和Lyft之外,DoorDash和Instacart还开始为探讨为受到影响的配送人员提供相应资金支持。(完)

新冠肺炎已经在欧洲和美国已经全面爆发,最近几天确诊患者数量上涨非常快。有些专家预言病毒可能会跟流感病毒一样,每年冬季爆发,会跟人类长期生存。

我们还做了意图识别,建立三级意图体系,第一级意图有九个,包含口罩、新冠知识、发热门诊之类等,接着不断细分。到第三级有329个意图,比如,口罩细分层就有购买渠道、价格、口罩配套、口罩是否可以重复使用等。

大家读这份报告的时候可以看到,想法最初是来自1月20号钟南山院士宣布疫情全面爆发以后,我们医疗线同事就在想我们能做什么,当时就决定在腾讯健康上开辟抗疫专区,产品的同事花了一天多的时间加班加点,22号凌晨8:00上线了抗疫专区,开发出很多抗疫工具。

伊朗位于两个主要板块相接之处,因此地震活动频繁。2017年11月,伊朗西部遭受了7.3级强烈地震的袭击,这是该国十多年来最致命的地震,造成数百人丧生。

2、新冠状肺炎CT辅助诊断,这是to B的项目,最终是部署到医院,目标是帮助影像科医生提高诊断准确率;

天衍实验室属于后台算法开发,更多是在幕后,用人工智能技术帮助抗疫专区项目推进,所以今天,我会从天衍实验室的角度阐述抗疫工具后面的黑科技。

目的是让信息能够透明,信息越透明越可以避免民众恐慌,可以增加政府的公信力,民众可以更好地理解和配合政府抗疫措施。

通过不断积累,我们工具的数据来源包括卫健委在内23个权威网站,保证信息权威性,库里所有问答最后都是通过中华预防医学会专家校验,通过多轮迭代以后,我们的问答覆盖率已经达到超过97%。

战疫」实情一无所知”,讲述了腾讯健康抗疫专区背后的故事,主要采访了产品,前台开发、小程序开发同事,里面的故事非常感人,有很多细节也是我们读了文章才知道,因为我们很多人是在家一直加班。

CT上可以看到肺炎病人还是有比较明显的症状,当然早期、进展期、重症期症状是有区别的。在早期主要是磨玻璃状阴影,不是完全实心,可以看到后面的血管,跟正常肺组织差异比较小,到进展期、重症期会慢慢实化,最严重时候可能变白肺。

信息采集模块主要有两块,一是权威信息爬取,用自动爬虫工具去爬取数据来源,最终达到23个,每个数据来源的问答很大部分是重叠的,所以我们做了一些去重的工作,还有每个网站格式可能不太一样,我们需要做格式归一化,最后清洗完将问题入库。

我们希望通过一个工具,把权威信息集中起来,有效地给公众传播。虽然卫健委以及中国头部医疗机构会在官网上放出权威信息及问答,但这种官网信息最大的问题是流量小、文件篇幅长、难以检索。

此前的5月20日,市场分析资讯公司凯度发布的调研报告显示,95%的消费者表示将参与今年618,其中6成首选淘宝天猫,3成选择京东。

在疫情开始初期,大家都希望能得到权威解答,比如,怀疑自己是否得了新冠肺炎会问新冠肺炎症状等,但是网上的信息良莠不齐,甚至有些是故意编造的谣言。

外界疑问:京东最后的618主场没了?

第一个难点:信息滞后。最笨的方法是人工直接寻找信息,做一次就上线,可这个方法最大问题是源于信息更新,因为疫情高峰时期,每天都会有新的小区出现,有信息更改,所以希望越自动化越好。

事实上,按照平日交易情况,天猫一直高于京东,618期间也不外乎此。但天猫并不公布618的交易规模,今年是天猫618首次公布与京东一致口径的成交金额,这才让外界觉得主场易主。

天衍实验室参与更多的是抗疫工具研发。微信同事也非常给力,在“我-支付-腾讯服务”的九宫格里给我们上线了医疗健康顶级入口,帮助工具做快速传播。总共15个工具中,天衍实验室参与了其中5项,包括疫情小助手、患者小区、发热自查、发热门诊、口罩攻略等。

新冠肺炎从2019年12月份爆发以来进展非常迅速,1月20号,钟南山院士宣布新冠病毒存在人传人,1月23号武汉开始封城,疫情在全国全面爆发。

首先对输入层做了很多工作,比如拼写纠错、因为输入可能是同音字会有拼写错误,还有标准化改写,因为新冠是新疾病,在统一名称之前,不同时期有不同叫法。

制作工具的难点主要有三个:

该国紧急组织负责人宣布,地震未对德黑兰市造成任何伤害,所有紧急服务站都处于待命状态。地震发生后,伊朗内政部长向德黑兰省长和危机管理组织负责人发出命令,敦促他们立即派出救援队前往该地区。

国家卫建委第5版新冠肺炎诊断指南里,把CT作为一个临床诊断标准(仅限湖北省份)。以后,2020年2月13日,湖北省确诊病例单日增加将近15000例,其中大部分是基于CT影像确诊的,意味那批核酸阴性的病人,得到了真正的确诊,后续可以更加合理的治疗。

这个产品主要目的有两个,“抑制谣言传播”,“助力权威信息传播”,权威信息传播了,谣言自然就没有生存空间。

1、腾讯健康小程序抗疫专区,这是to C的产品,依托于腾讯微信平台,目前是给大家做疫情知识科普,加强防疫意识;

另外相关的是腾讯健康。腾讯健康小程序提供实时疫情展示、线上问诊AI自查服务,累计有3亿用户使用。

这里我只展示一个技术,利用BERT模型做小区信息抽取,抽取的信息包括小区名称、发布时间、数据来源等。对BERT模型来说,输入有两块,一块是段落文本,一块选取信息,假如,想抽取小区信息就输入患者小区4个字,就会做词向量的空间embedding,再加上位置信息,模型会自动告诉我们,提取的信息起始位置、终止位置,做到非常自动化,减少人力寻找。

6982亿这个数字,成为2020年中大促的最强音。另外视角来看,天猫618不仅是商业的促销季,更是全社会的信心之战。

对AI算法来说,也是非常巨大的挑战,因为疫情爆发初期,很难获得大量数据。我们第一个版本只用一周时间就要开发、迭代,最终落地。还有标注的问题,因为前线医生都非常忙,我们不想打扰前线医生抗疫工作,也不可能让前线医生给我们标很多数据。 

所以我们就开创性地提出,一种正向反向溯源方法提高数据质量,因为开始冷启动的时候,没有权威信息来源列表,最开始的爬虫方法信息质量没有保证,所以一旦提取到小区发现确诊病例,就会用这个小区名字反向搜索,可能出现几十个信息来源,最后去定位最权威来源(一般来源于官方的发布)。

腾讯作为中国头部互联网公司,过去两个月也积极投身国内抗疫工作。在3月18号,腾讯发布2019年财报和2019年第4个季度财报上,专门有章节介绍抗疫期间的工作,列下来大概有6点,其中两点是跟天衍实验室密切相关。比如,腾讯的15亿抗疫基金中,捐赠6台CT扫描仪搭载新冠CT影像诊断算法,部署到武汉抗疫前线;给钟南山院士团队捐赠3000万,用于新冠治疗方法研究,建立联合实验室,天衍实验室是腾讯内部专门负责对接的的技术团队。

用户甚至可以制定意图,比如他想知道所有跟口罩相关的科普知识,我们会通过意图分析,把数据库里信息做分类处理,把口罩相关信息推送给用户,让用户自由阅览。

信息可以展现在地图上,用户实时交互,得到比较好的用户体验,我们最终覆盖城市232个,城市覆盖率超过70%。覆盖小区数目超过8000个。

今天公开课,首先介绍天衍实验室,然后分享实施的三个项目:

每个信息我们还注明截止日期、从哪公布,也有订阅功能,如果你周围小区有情况更改,会自动推送。我们还有一些科普的知识,比如小区出现患者该怎么办。

这是我们产品的展示效果,可以根据用户地理位置,可以把周围小区都覆盖在地图上,以确诊患者小区,画三公里半径圆,用户可以很清楚看到患者小区距离,也可切换到列表模式,给出小区名字、地址、距离等信息。

秉承开放的态度,除了在腾讯健康上线之外,我们还对外输出,比如服务了17个省区40个卫计委和疾控中心,还服务了近100家医院。

中国花了一个多月时间,完全控制疫情的传播,当时觉得疫情就像当年SARS一样,过去了,病毒就完全消失了,后来发现情况比我们想象的要严重。

这是我们产品的展示,进入这个界面可以看到先推荐几个最热点问题,假设用户感兴趣可以直接点击,如果不感兴趣,可以问全新的问题,比如新冠肺炎患者临床表现,程序会到数据库匹配,找到最相关答案展示,回答完这一轮问题以后,会预估用户可能还存在的问题,进行自推荐。

还有更相关的项目是,我们跟国内顶尖的传染病医院,在免疫抑制人群肺炎(PCP)和普通人群肺炎这两个分类上做了很多科研工作,这个工作跟现在新冠肺炎的项目非常像,也积累了很多数据。

过去两个月对全国人民来说都是不寻常的两个月。今天我跟大家分享我们的一些工作。